

Recommended Product Range

Bearings for printing presses and print finishing machines

Contents

For preferential treatment - the SKF recommended product range 3 Benefits of using SKF recommended product range bearings 3	
Bearings used in printing presses and print finishing machines 4	
Introduction 4	
Deep groove ball bearings	
Self-aligning ball bearings 6	
Angular contact ball bearings 6	
Cylindrical roller bearings 7	
Needle roller bearings 8	
Inner rings 9	
Printing cylinder bearing units (PCU)	
Spherical roller bearings 10	
Taper roller bearings	
Track runner bearings	
Recommended product range matrices and tables 12	
Bearing designations 12	
Designation suffixes 12	
Deep groove ball bearings 14	
Self-aligning ball bearings 15	
Single row angular contact ball bearings 16	
Double row angular contact ball bearings 16	
Four-point contact ball bearings 17	
High precision angular contact ball bearings 17	
Cylindrical roller bearings	
High precision cylindrical roller bearings	
Cylindrical roller bearings for oscillating rollers	
Printing cylinder bearing units (PCU)	
Drawn cup needle roller bearings	
Needle roller bearings without inner ring	
Needle roller bearings with inner ring	
Inner rings	
Spherical roller bearings	
High precision and preloaded spherical roller bearings	
Taper roller bearings	
High precision taper roller bearings	
Cam rollers	
Support rollers with axial guidance	
Support rollers without axial guidance	
Cam followers	
Other products	
Application examples	
The SKF Group – a worldwide corporation	

For preferential treatment – the SKF recommended product range

To further improve customer service SKF has made special applicationoriented selections of bearings from the comprehensive SKF range. These recommended product ranges are directed at specific industries.

Each bearing has been carefully chosen based on the extensive experience of bearing applications in the particular industry. SKF has accumulated this knowledge through working closely with bearing users the world over.

To meet customer demands SKF is prepared to supply any bearing. However, when special bearings are required in small quantities for an application, a recommended product range item offers the chance to obtain the optimum product at a favourable price and with the appropriate availability.

Thus, to choose a bearing from this recommended product range implies additional benefits, even for small quantities.

Benefits of using SKF recommended product range bearings

- Simplified bearing selection and application design work coupled with confidence in the suitability of the range offered
- Short delivery times
- Long-term supply stability
- Worldwide availability
- No minimum order quantity
- Simplified ordering and stocking

Bearings used in printing presses and print finishing machines

Introduction

Printing presses and print finishing machines are applications with a very large bearing assortment portfolio. When talking about general requirements on bearings for printing machinery, the demands of each application area should be considered separately.

Therefore bearings for printing presses or print finishing machines should always be selected in close cooperation with SKF. SKF is present in all markets and offers a comprehensive advisory service. The contacts with SKF engineers also serve to further improve the performance and functionality of bearing arrangements in general and of printing machine bearing arrangements in particular.

Bearings for printing cylinders

Highest possible precision is the most important feature for bearings used for printing cylinders. Especially for offset printing presses SKF suggests the use of high precision spherical roller bearings with special design features or printing cylinder bearing units based on high precision cylindrical roller bearings which can also be designed as eccentric units.

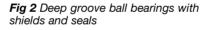
For transfer cylinders in sheet fed presses SKF offers a special taper roller bearing range to be used as locating bearings and high precision cylindrical roller bearings of NNU 49 design for the non-locating position.

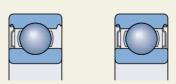
Photo: Heidelberger Druckmaschinen AG

Bearings for inking rollers, dampening rollers, paper guiding rollers etc.

SKF offers a wide selection of deep groove ball bearings in an open version or with shields or seals (low friction and rubbing seals). For applications with higher misalignments than normal SKF offers a comprehensive range of self-aligning ball bearings and spherical roller bearings.

For oscillating rollers needle roller bearings and cylindrical roller bearings are mainly used. On top of the standard assortment SKF offers a specially designed range of cylindrical roller bearings with extended inner rings. Also cylindrical roller bearings of the RNU design can be matched with inner rings which fit into the application.

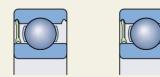

Bearings for pre-press applications and print finishing machines

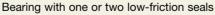

Normally standard bearings are used for this segment in a wide variety of types and sizes. In addition to high quality, availability is one of the most important requirements for these products.

Deep groove ball bearings

Single row bearings can support radial and additional axial loads acting in both directions and are suitable for high speed operation. The basic design is an open (unsealed) bearing (\rightarrow fig 1). SKF deep groove ball bearings are also available with shields (non-rubbing seals), or with seals (low-friction seals and rubbing seals) (\rightarrow fig 2) at one or both sides.

Deep groove ball bearings are used in a large number of different applications, mainly for inking, dampening and paper guiding rollers but also in bookbinding lines, folders and other print finishing machines.





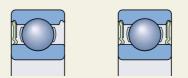

Bearing with one or two shields

Fig 1 Deep groove ball bearing (open)

Bearing with one or two rubbing seals

Self-aligning ball bearings

Self-aligning ball bearings have two rows of balls with a common sphered raceway in the outer ring. This gives the self-aligning property, permitting angular misalignment of the shaft relative to the housing. The bearings are available in an open (unsealed) design (\rightarrow fig 3) or with rubbing seals at both sides (\rightarrow fig 4). Self-aligning ball bearings are produced with a cylindrical bore as well as with a tapered bore (taper 1:12).

Due to the ability to accommodate misalignment, self-aligning ball bearings are mainly used to support wide rollers with high deflection.

Angular contact ball bearings

SKF angular contact ball bearings are produced in a wide variety of designs and sizes. Those commonly used in the printing machine industry are

- single row angular contact ball bearings (→ fig 5),
- double row angular contact ball bearings (→ fig 6),
- four-point contact ball bearings (→ fig 7), and
- high precision angular contact ball bearings (→ fig 8).

Single row angular contact ball bearings

Single row bearings for universal matching are commonly used for the axial support of printing cylinders together with printing cylinder bearing units for supporting radial loads (\rightarrow fig 1, page 36). When using universally matched single row angular contact ball bearings, SKF recommends the use of medium clearance (suffix BECBP) or light preload (suffix BEGAP).

Double row angular contact ball bearings

Double row angular contact ball bearings can accommodate heavy radial loads and axial loads acting in both directions. The bearings are also

Fig 3 Self-aligning ball bearing

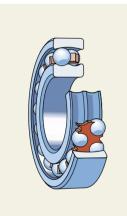
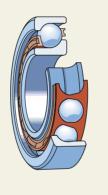
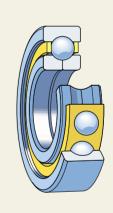




Fig 5 Single row angular contact ball bearing

Fig 7 Four-point contact ball bearing

Fig 4 Self-aligning ball bearing with rubbing seals

Fig 6 Double row angular contact ball bearing

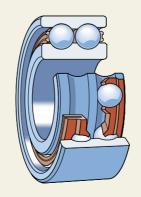
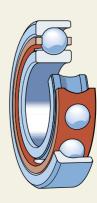



Fig 8 High precision angular contact ball bearing

Bearing with shields at both sides

Bearing with seals at both sides

Fig 9 Sealed double row angular contact ball bearings

of two bearings for universal pairing with matched bore and outside diameters are also available. Depending on preload class, these carry the designation suffix DGA, DGB,or DGC (e.g. 7006 CD/P4ADGB).

High precision angular contact ball bearings are produced as standard to tolerance class P4A specifications and are used for high precision applications such as printing cylinders or transfer cylinders in sheet fed presses or any other application where the highest possible accuracy is needed.

Precision support bearings for ball and roller screws (of series BSA or BSD) are also suitable for the above applications. For more information see SKF catalogue 4950 "High precision bearings".

Fig 10 Cylindrical roller bearing

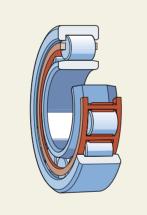
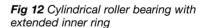
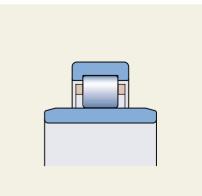


Fig 11 Cylindrical roller bearing, RNU design




Single row bearings are produced in various designs for heavy, purely radial loads (e.g. NU (\rightarrow fig 10) and N designs) and for additional light axial loads acting in one or both directions (e.g. NJ and NUP designs). These bearing designs are much used in gearing systems and power transmission for printing presses.

Cylindrical roller bearings for oscillating rollers

Cylindrical roller bearings are also available without inner ring (RNU design) (\rightarrow fig 11) and can be used to run directly on a shaft or they can be matched with inner rings with extended width. Such bearings are best suited for the support of oscillating rollers.

Specially designed SKF cylindrical roller bearings (\rightarrow fig 12) are used successfully for rotating and simultaneously oscillating shafts of reciprocating rollers. The bearings are designed with extended inner ring to give the required axial displacement. Bearings are fitted with a polyamide cage and are mainly grease lubricated but can also be integrated into a central oil circulating system.

available as standard with shields (non-rubbing seals), and seals (rubbing seals), at both sides (\rightarrow fig 9).

Double row angular contact ball bearings are commonly used as locating bearings for printing cylinders, in gear transmissions and in other applications where the carrying capacity of deep groove ball bearings is not enough.

Four-point contact ball bearings

Four-point contact ball bearings are single row angular contact ball bearings having raceways which are designed to support axial loads in both directions (\rightarrow fig 7). They need less axial space than double row bearings.

Four-point contact ball bearings are often used in the drive arrangements of web and sheet fed presses together with cylindrical roller bearings.

High precision angular contact ball bearings

SKF high precision angular contact ball bearings (\rightarrow fig 8) are produced in three different dimension series – 719, 70 and 72 – and are available with contact angles of 15° (suffix CD) and 25° (suffix ACD).

Bearings for universal pairing are identified by the designation suffix G followed by A, B or C for the preload class (e.g. 71910 ACDGA/P4A). Sets

High precision cylindrical roller bearings

Cylindrical roller bearings used for these applications have a double row design based on series NNU 49 $(\rightarrow$ fig 13) and NN 30 $(\rightarrow$ fig 14). The rollers of the NNU type bearings are guided between the flanges of the outer ring whilst those of NN type bearings are guided between the flanges of the inner ring. The bearings have a higher tolerance class than normal (SP) and can be supplied with cylindrical bore or with tapered bore (taper 1:12). To achieve efficient lubrication, all bearings are provided with an annular groove and lubrication holes in the outer ring (the W33 feature). Cages are available in brass or polyamide 6,6 depending on bearing size.

High precision cylindrical roller bearings are well suited to support printing cylinders of any kind, bearings of the NNU 49 design are often used in transfer cylinders of sheet fed presses. Bearings of NN 30 design form the basis of the printing cylinder bearing units (PCU) (\rightarrow page 9).

Needle roller bearings

Needle roller bearings incorporate cylindrical rollers which are thin and long in relation to their diameter. In spite of their low cross section, the bearings have a high load carrying capacity and are thus suitable for bearing arrangements where radial space is limited.

Commonly used types are

- drawn cup needle roller bearings
 (→ fig 15),
- needle roller bearings without inner ring (→ fig 16), and
- needle roller bearings with inner ring (→ fig 17).

For applications where an adequate seal is not available or cannot be provided for space reasons, sealed needle roller bearings can be supplied.

Needle roller bearings are widely used in various applications in print finishing machines. Instead of needle roller bearings, printing cylinders are increasingly being fitted with high precision spherical roller bearings (→ page 10) or printing cylinder bearing units (PCU) (→ page 9). The printing cylinder bearing units with 3 or 4 rings incorporate needle roller and cage assemblies to ensure smooth (and frictionless) adjustment of the eccentric rings.

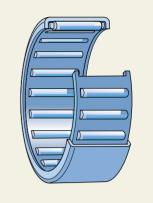
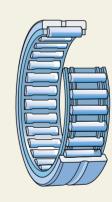
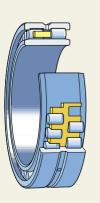




Fig 15 Drawn cup needle roller bearing

Fig 16 Needle roller bearing without inner ring

Fig 13 High precision cylindrical roller bearing, series NNU 49

Fig 14 High precision cylindrical roller bearing, series NN 30

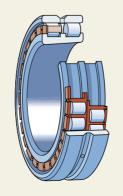
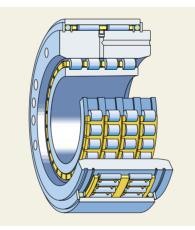


Fig 17 Needle roller bearing with inner ring

Inner rings


SKF also supplies loose inner rings (\rightarrow fig 18) for use with needle roller bearings or cylindrical roller bearings without inner ring in cases where the shaft cannot be hardened and ground. It is also possible to use extended inner rings in order to permit larger axial displacements of the shaft relative to the housing or to provide ideal riding surfaces for the lips of seals.

Printing cylinder bearing units (PCU)

Printing cylinder bearing units (PCU) (\rightarrow fig 19) combine the functions of the separate components of the traditional bearing arrangement into a compact self-contained unit. Several designs are available in a range of sizes tailored to meet the needs of the printing press manufacturers.

They are based on high precision cylindrical roller bearings NN 30 and are multi-row (2, 3 or 4) cylindrical roller bearings where usually the outer ring is replaced by an eccentric ring. Some designs have one or two eccentric intermediate rings (\rightarrow fig 20), each supported by a double row needle

Fig 19 Printing cylinder bearing unit (PCU)

roller and cage assembly. The outermost ring is usually cylindrical.

The units are designed to facilitate the adjustment of printing cylinders in offset presses required during printing press operation. They can also be used for other printing technologies than offset as well as for any other application where eccentricity is needed.

Fig 18 Inner ring

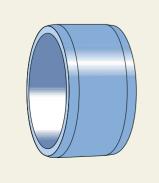
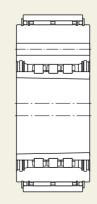
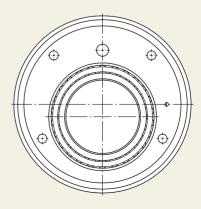




Fig 20 Some printing cylinder bearing units have one or two eccentric intermediate rings, each supported by a double row needle roller and cage assembly

Spherical roller bearings

These are double row bearings, which are self-aligning and consequently insensitive to errors of alignment of the shaft relative to the housing and to shaft bending (\rightarrow fig 21). In addition to radial loads, the bearings can also accommodate axial loads acting in both directions.

Spherical roller bearings with normal tolerances are used in the power transmission of printing presses or to support wide rollers with high deflection.

SKF offers high precision, preloaded spherical roller bearings for printing cylinder applications. These bearings are identified by the designation suffixes VA751, VA759 and VAB.

Besides this special range there is another earlier range of special bearings for printing cylinders identified by six-figure drawing numbers (e.g. 453538). They are still used in several markets.

SKF Explorer – new performance class for spherical roller bearings

Developments in material and heat treatment, manufacturing process and bearing design have resulted in a new spherical roller bearing, known as Explorer. The new Explorer spherical roller bearings outlast all other spherical roller bearings, including the previous SKF bearings. To pass on the benefits of the several times longer life to users, the calculation methods for life prediction have been modified. For more information about the Explorer spherical roller bearings, see SKF publication 4401.

Taper roller bearings

The standard bearings are single row bearings for heavy radial and simultaneously acting heavy single direction axial loads (\rightarrow fig 22). Two bearings on the shaft are adjusted against each other in order to give clearance or preload, depending on the requirements of the application.

SKF offers a special tailored range of high precision taper roller bearings for printing cylinders or transfer cylinders in sheet fed presses (\rightarrow fig 23). These special bearings are based on double row taper roller bearings with the roller rows arranged back-to-back. The bearings are preloaded in operation and the running accuracy is to tolerance class P4.

Fig 21 Spherical roller bearing

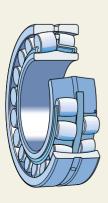
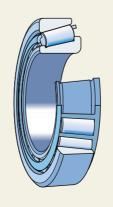
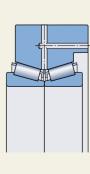
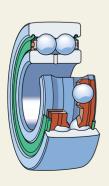
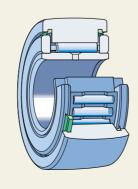




Fig 22 Taper roller bearing

Fig 23 Special taper roller bearing


Track runner bearings

Track runner bearings having a particularly thick-walled outer ring, can accommodate heavy as well as shock loads. They are ready-to-mount units, for all types of printing presses and paper handling systems, and are widely used in the postpress section for folders, cutters, gathering machines, book manufacturing lines and other applications.


Commonly used types are

- cam rollers, wide design (→ fig 24),
- support rollers (\rightarrow fig 25), and
- cam followers (→ fig 26).

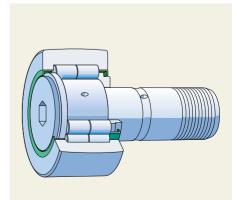

Fig 24 Cam roller, wide design

Fig 25 Support roller

Fig 26 Cam follower

Recommended product range matrices and tables

The bearings included in this recommended product range are presented in the same bearing type order as in the SKF General catalogue or SKF Interactive Engineering Catalogue. They are shown in Dimension Series order (light section series to the left, heavy to the right).

Bearing designations

The matrix headings show bearing designations without the size figures. A darker coloured square indicates the position for the size where appropriate.

Designation suffixes

The following designation suffixes will be found in the matrices.

- A Deviating or modified internal design with same boundary dimensions. As a rule the significance of the letter is bound to the particular bearing or bearing series
- ACD Single row angular contact ball bearing, optimised internal design, 25° contact angle
- ADA Wide snap ring grooves in the outer ring; two-part inner ring held together by a retaining ring
- AS Needle roller bearing with lubrication hole(s) in outer ring. A figure following the AS indicates the number of holes
- B Deviating or modified internal design with same boundary dimensions

- **BE** Single row angular contact ball bearing with 40° contact angle and optimised internal design
- **BEP** Single row angular contact ball bearing with 40° contact angle and optimised internal design, with moulded cage of glass fibre reinforced polyamide 6,6
- C Deviating or modified internal design with same boundary dimensions. As a rule the significance of the letter is bound to the particular bearing
- CA Spherical roller bearing of C design, but with retaining flanges on inner ring and machined cage
- **CB** Single row angular contact ball bearing for universal pairing in back-to-back, face-to-face or tandem arrangement. When arranged back-to-back or faceto-face there will be Normal clearance
- **CC** Spherical roller bearing of C design but with enhanced roller guidance and correspondingly reduced friction
- **CD** Single row angular contact ball bearing, optimised internal design, 15° contact angle
- **CL7A** Previous standard taper roller bearing quality for pinion bearing arrangements
- **CL7C** Current standard taper roller bearing quality for pinion bearing arrangements
- **C3** Bearing internal clearance greater than Normal

DB

Ε

Two single row deep groove ball bearings, single row angular contact ball bearings or single row taper roller bearings matched for mounting in a back-to-back arrangement; the letter(s) following the DB indicate the magnitude of the axial internal clearance or preload in the bearing before mounting: for paired taper roller bearings the design and arrangement of the intermediate rings between the inner and/or outer rings are identified by a two-figure number which follows immediately after DB

- A Light preload (angular contact ball bearings)
- B Preload greater than A (angular contact ball bearings)
- GA Light preload (deep groove ball bearings)
- **GB** Preload greater than GA
- DG Two single row angular contact ball bearings for universal pairing, i.e. paired for mounting in a back-to-back, face-to-face or tandem arrangement; supplementary designations for axial internal clearance and preload are explained under DB
 - Deviating or modified internal design with same boundary dimensions; as a rule the significance of the letter is bound to the particular bearing or bearing series; usually indicates reinforced rolling element complement
- EC Optimised internal design

- **GA** Single row angular contact ball bearing for universal pairing in a back-to-back or face-to-face arrangement; when mounted the bearing pair will have a slight preload
- **GB** Single row angular contact ball bearing for universal pairing in a back-to-back or face-to-face arrangement; when mounted the bearing pair will have a preload greater than GA
- J Pressed steel cage, unhardened; different designs or materials are identified by a figure , e.g. J2
- K Tapered bore, taper 1:12 on diameter
- **K30** Tapered bore, taper 1:30 on diameter
- **2LS** Rubbing seals of nitrile rubber (NBR) at both sides of bearing
- M Machined brass cage; different designs or materials are identified by a figure, e.g. M2
- MA Machined brass cage, outer ring centred
- P Moulded glass fibre reinforced polyamide 6,6 cage
- **PP** Nitrile rubber rubbing seals at both sides of track runner bearing
- **PPA** Thrust washers of polyamide 6,6 with seal lip at both sides of track runner bearing
- P4A Dimensional accuracy to ISO tolerance class 4 and running accuracy to ABMA tolerance class ABEC 9
- **Q** Optimised internal geometry and surface finish of taper roller bearings
- **RS** Rubbing seal of nitrile rubber at one side of bearing (needle roller bearings)

- **RS1** Rubbing seal of nitrile rubber with sheet steel reinforcement at one side of bearing
- **RZ** Low-friction rubbing seal of nitrile rubber with sheet steel reinforcement at one side of bearing
- **2RS** RS seal at both sides of bearing (needle roller bearing)
- 2RS1 RS1 seal at both sides of bearing
- **2RZ** RZ seal at both sides of bearing
- SP Special tolerance class for machine tool spindle bearings; dimensional accuracy approximately to ISO tolerance class 5 and running accuracy approximately to ISO tolerance class 4
- TN Moulded cage of plastic; different designs or materials are identified by a figure following the TN Example: TN9 Moulded cage of glass fibre reinforced polyamide 6,6
- **VAB** High precision and preloaded spherical roller bearings
- VA751 High precision and preloaded spherical roller bearings
- VA759 High precision and preloaded spherical roller bearings
- **W33** Annular groove and three lubrication holes in outer ring
- X 1. Boundary dimensions altered to conform to ISO standards
 - 2. Cylindrical runner surface
- 2Z Z shield at both sides of the bearing

Deep groove ball bearings

										 					-		 -						 					 		
Bearing bore diameter, mm	618	8 -2RZ	8 -2RS1		0	619 -2RZ	619 -2RS1		160		60 -2Z	-2Z/C3	-2RS1	60 -2RS1/C3		161		62 -2Z	-2Z/C3	-2RZ	62 -2RS1	-2RS1/C3		63 -2Z	63 -2Z/C3	63 -2RS1	63 -2RS1/C3	42 ATN9		Bearing size
	61	61	61		61	61	61		16	60	00	00	00	00		16	62	62	62	62	62	62	63	63	63	63	63	42		
3																														3
4																														4
4 5 6 7																														5
6																														6*)
																														3 4 5 6 ^{*)} 7 8 ^{*)} 9 00
8		_																												8*)
9																														9
10								-																						00
12 15																														01 02
15																														02
17																														03
20 25								-																						04 05
25								-							-															05
30 35								⊢																						06
40								-																						07 08
40				-							-				-															00
50																														09 10
55				-		-					-																			11
60						-		-																						12
65				-																										13
70								-																						14
70 75																									_				_	11 12 13 14 15
80		_						\vdash																					_	16
85		_						\vdash																						16 17
90																														18
95																														19
100																														20
105																														21
110																														22
120																														24
130																														26
140																														28
150																														30
160																														32
170																														34
180																														36
190																														38
200																														40
220																														44
240																														48

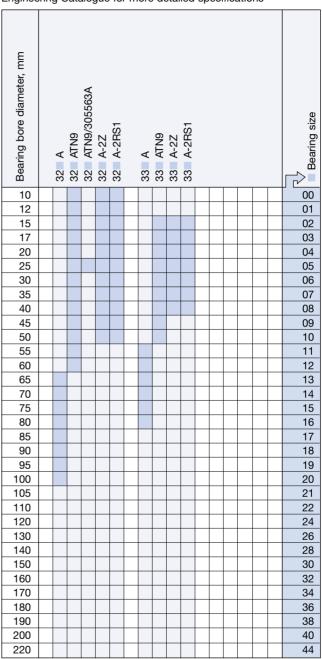
See SKF General Catalogue 4000 or SKF Interactive Engineering Catalogue for more detailed specifications

*) /6 and /8 for series 618

Self-aligning ball bearings

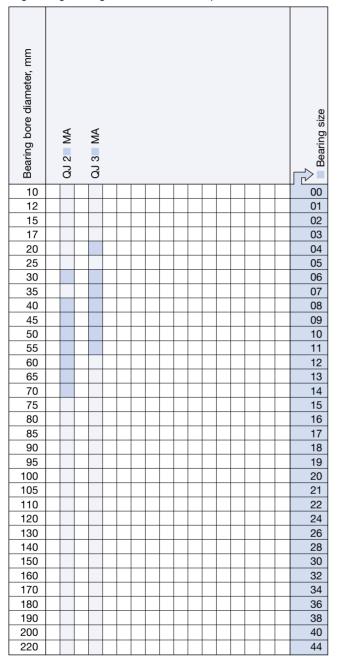
See SKF General Catalogue 4000 or SKF Interactive Engineering Catalogue for more detailed specifications

Bearing bore diameter, mm	12 ETN9	12 EKTN9	13 ETN9	22 ETN9	22 EKTN9	22 E-2RS1TN9	22 E-2RS1KTN9	22 E-2RS1KTN9/C3		23 ETN9	23 E-2RS1TN9		Bearing size
10													00 01 02 03
12 15 17									-	-			02
17												_	02
20													04
20 25												_	04 05
30													06
35													06 07
40													08
45													09
50													08 09 10 11 12 13
55													11
60													12
65													13
70													14
75													15


Single row angular contact ball bearings

See SKF General Catalogue 4000 or SKF Interactive Engineering Catalogue for more detailed specifications

Bearing bore diameter, mm		72 BEGAP	72 BEGBP	73 BEP	73 BECBP	73 BEGAP	73 BEGBP				Bearing size
10											00
12											 01
15											02
17	_	_									 03
20	_	_	_								 04
25	+	_	-								 05
30	_	_	_								 06
35		_		_							07
40	_	_	_								 08
45	+	_	_								 09
50	+	_	-								 10
55	+	_	-						 		 11 12
60	+		-	_							12
65 70	+	-	+	_			<u> </u>		 		 13
70	+		+								 14
80	+		-	_					_		 16
85	+	-	-	_							 17
90	-		-	_							18
95	+		-	_			-				 19
100	+		+	-							20
105			-	_							 21
110	-	-	-	_							 22
120	+		1								 24
130	+	-	+	_							 26
140											28
150	1										 30
160											32
170											34
180											36
190											38
200											40
220											44


Double row angular contact ball bearings

See SKF General Catalogue 4000 or SKF Interactive Engineering Catalogue for more detailed specifications

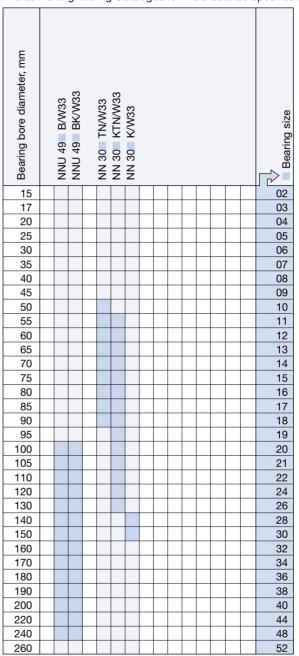
Four-point contact ball bearings

See SKF General Catalogue 4000 or SKF Interactive Engineering Catalogue for more detailed specifications

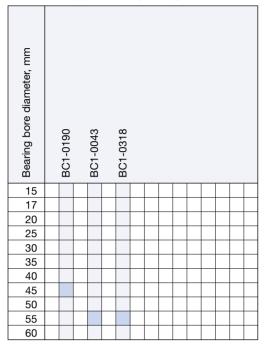
High precision angular contact ball bearings

See SKF catalogue 4950 "High precision bearings" for more detailed specifications

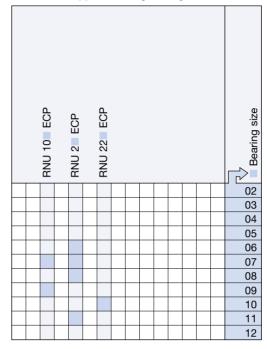
for more	e de	eta	ilec	l sp	bec	ific	atic	ons								
Bearing bore diameter, mm		719 ACDGA/P4A	719 ACD/P4ADBA		70 CDGA/P4A	70 CD/P4ADGA	70 CD/P4ADGB	70 CD/P4ADBA	70 ACDGA/P4A	70 ACD/P4ADGA	70 ACD/P4ADGB	72 CD/P4ADGA	72 CD/P4ADGB	72 ACDGA/P4A	72 ACD/P4ADBA	Bearing size
10																00
12																01
15																02
17																03
20																01 02 03 04 05
25																05
30																06
35																07
40																08 09 10 11
45																09
50																10
55																11
60																12
65																13 14
70																14
75																15 16
80																16
85																17
90 95																18 19
																19
100 105																20 21 22
110																21
120																22
130					-											24
140																28
140 150																30
160	-										_					32
170																34
180																36
190																38
200																40
220																44
					-											

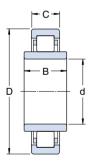

Cylindrical roller bearings

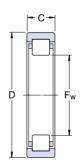
See SKF General C atalogue 4000 or SKF Interactive Engineering Catalogue for more detailed specifications


High precision cylindrical roller bearings

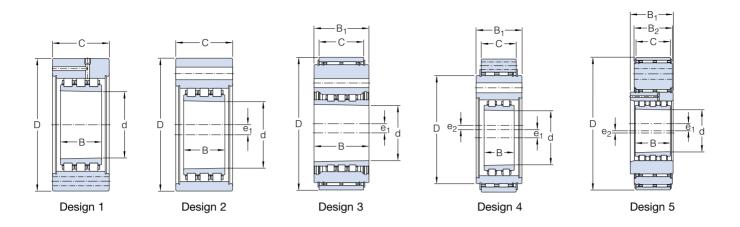
See SKF catalogue 4950 "High precision bearings" or SKF Interactive Engineering Catalogue for more detailed specifications


Cylindrical roller bearings for oscillating rollers


For more detailed specifications please contact the nearest SKF application engineering service

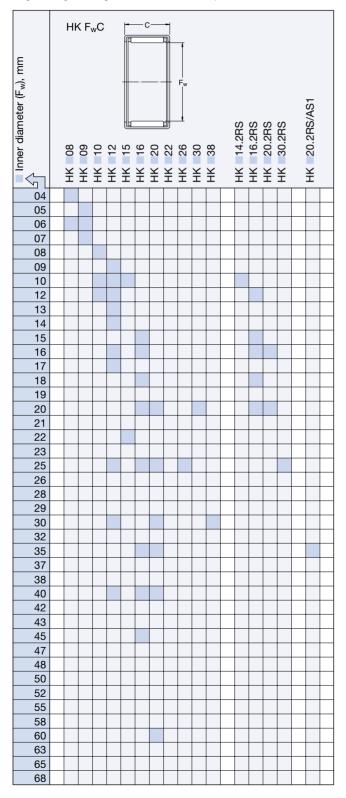

Cylindrical roller bearings for oscillating rollers

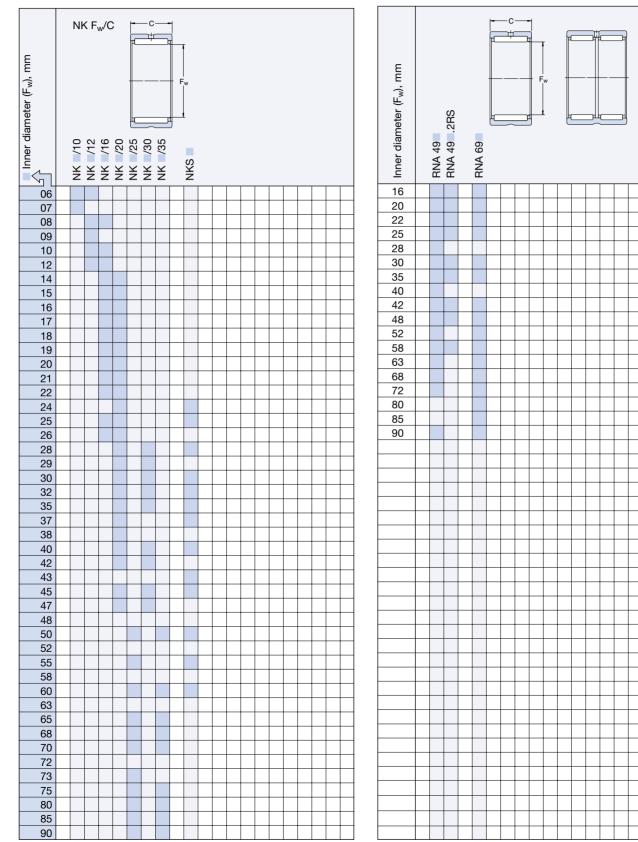
For more detailed specifications please contact the nearest SKF application engineering service


Designation	Princ	ipal din	nensio	าร	
	d	D	С	В	
-	mm				
BC1-0190 BC1-0043 BC1-0318	45 55 55	75 100 100	16 21 21	50 45 59	

Designation	Princi	pal dime	ensions
	F_{w}	D	С
-	mm		
RNU 206 ECP RNU 1007 ECP RNU 207 ECP RNU 208 ECP RNU 1009 ECP RNU 2210 ECP RNU 211 ECP	37,5 42 44 49,5 52,5 59,5 66	62 62 72 80 75 90 100	16 14 17 18 16 23 21

Printing cylinder bearing units (PCU)

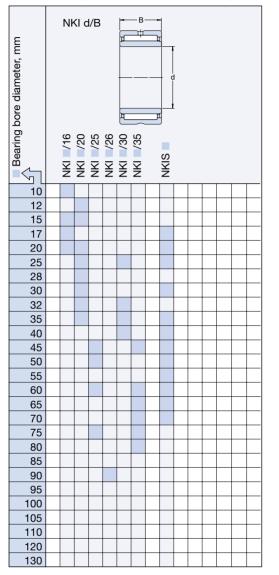

20

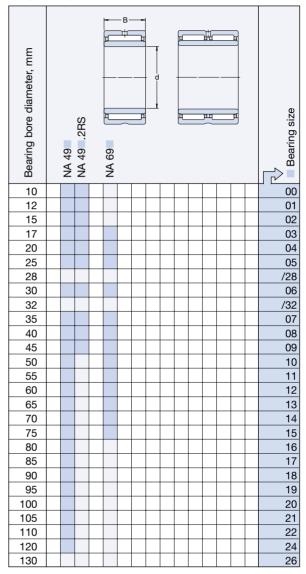

See SKF brochure Dd 7977 "The new printing performance standard" for more detailed information

Dime	nsions					Designation	Design	Taper
d	D	В	B ₁ /B ₂	С	e ₁ /e ₂			
mm						-	_	-
Desig	n 1 and 2							
50	105	23		40	_/_	BC2-7139	1	1:12
65	125 130 130	53 40 40		65,1 55 55	-/- -/- 10/-	BC4B 326624 BC3-0004 A BC3-0005 A	1 1 2	1:30 1:30 1:30
95	185 185	65 65		95 95	-/- 12,7/-	BC3-7014 BC3-7013	1 2	1:30 1:30
105	200	60		80	_/_	BC3-0001 B	1	1:30
120	273,05	46		80	4,76/-	BC2-7171	1	1:12
170	235	78		88	_/_	BC4-7046	1	1:30
Desig	n 3, 4 and	5						
50	120	23	50/-	43	6/-	BVT-7013	3	1:12
65	142 142 142	53 53 53	65,1/- 65,1/- 65,1/-	52 52 52	3,5/- 3,5/- 3,5/-	BVTB 326625 C BVTB 326625 CC BVTB 326625 CD	3 3 3	1:30 1:30 1:30
	150 150 160	40 53 36	55/- 65,1/- 56/-	48 52 52	10/- 7/- 16/-	BCT-0003 A BVTB 326627 AA BVT-7026	3 3 3	1:30 1:30 1:12
	180 205 205	40 53 53	88,5/– 65,1/59,5 65,1/59,5	60,5 52 52	12/7 7/14 3,5/14	BVT-7030 A BVNB 326628 A BVNB 326626 C	3 5 5	1:30 1:30 1:30
75	180 205	48 48	60/- 60/-	52 52	12,7/– 24/–	BCT-0004 A BCT-0005 A	3 3	-
95	205	65	95/-	58	12,7/-	BVT-7029 A	3	1:30
105	240	60	80/-	68	12,7/0,5	BCT-7002 D	4	1:30
120	273,05	46	80/-	68	12,7/-	BVT-7044	3	1:12
170	310	78	88/-	66	12/-	BCT-7001	3	1:30

Drawn cup needle roller bearings

Needle roller bearings without inner ring


See SKF catalogue 4703 "Needle roller bearings" or SKF Interactive Engineering Catalogue for more detailed specifications


Bearing size

/22

/32

Needle roller bearings with inner ring

Inner rings

	ouii	-		1100				-				<u> </u>							-		,	-	5			J *																			
	IR	d×F	F×B	T	-	-B-	•																																						
Ring bore diameter, mm	S	5	1	F				5		5					5	5					5																								
ore	×12×10.5	×12×12,5	IR ×15×16	C,222,0	×10×12 ×16×16	×17×17	×18×16	×18×16,5	×20×20	IR ×20×30,5	IR ×22×13	IR ×22×16	IR ×22×23	×25×20	IR ×25×20,5	×25×26,5	×25×30	417	ŝ	×30×32	×30×38,5	×35×13	<u>2</u> 0	<u> </u> 26	ŝ	<u>3</u> 8	<17	<u>2</u> 0	ŝ	88	7 17	ŝ	ŝ	<u>3</u> 5	ŝ	6 40	Ŋ	6 40	²⁵	<u>3</u> 5	4 5	ć28	ŝ	4 5	
d gr	Ú Ú	12	12	è ∵∵∵	0 0 0 0	ς 17	_18 18	<u>18</u>	ŝ	ŝ	ŝ	ŝ	ŝ	25	25	25	25	×30×17	×30×30	ŝ	ŝ	35)	×35×20	×35×26	×35×30	IR ×40×36	R ×40×17	IR ×40×20	R ×40×30	R ×42×36	IR ×45×17	IR ×45×20	×45×30	×50×35	×52×22	×52×40	×58×22	×58×40	×60×25	×60×35	×63×45	×65×28	×68×35	×68×45	
", "	Â	Â	Ê	îí	î	î	î	Î	Ê	î	Ê	Â	î	î	Ê	î	î	Î	Î	î	î	Î	Ê	Î	î	î	Ê	î	î	Â	Î	Ê	Î	Î	î	î	Î	î	Î	î	î	Ê	Ê	Î	
	Ē	Щ	<u> </u>	<u> </u>		Щ	Ē	≝	Щ	Ē	Ē	ш	Ē	Щ	Ē	≝	≝	≝	Ē	Ē	Щ	Щ	Щ	Щ	Щ	Ē	Ē	Ē	Ē	Ē	<u>۳</u>	Ē	ш	≝	ш	ш	ш	≝	≝	۳	≝	۳	≝	≝	
8																																													
12																																													
14																																													
15																																													
17																																													
20																																													
25																																													
30			_		_	_	_														-										_				_										_
32			_	_		_	_														_										_				_										<u> </u>
35			_		_	+	-													-	-	_													_			_							-
40						-	-													-	-														_										-
45			-	_	_	+	-			-										-	+	-									_			_	_			_							⊢
50 55			-			-	-												-	-	-	\vdash	-			-								_	_	_							_	-	\vdash
55 60			-	+	_	-	-												-	-	-	-	-											_				-							\vdash
65			-	+		+	-	-									-			-	-	\vdash	-			-		-							-			-	_						\vdash
70			-	-		+	-													-		-					-											_	_						\vdash
80						-															-	-	-																						\vdash
85			-			+	-													-	-	\vdash	-			-													-					-	\vdash
90			+	+		-															-	-																							+
95						1														-		+	+																						\vdash
100						1															-	-																							\vdash
110						1																1																							\vdash
120			-	+		1	1																-																				_		t
130																							1																						

Inner rings

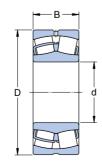
	IR	d×	F×E	3		-	-B-	•										
Ring bore diameter, mm	R ×70×25	<70×60	<72×25	<72×45	<75×28	<pre>80×25</pre>	<pre>60×30</pre>	<pre><80×35</pre>	(90×25	60×30	IR ×90×54	<100×35	c100×30	<105×26	<110×40	<120×30	c135×45	
", Bir	Ê	Ê	Ê	Ê	Ê	Ê	Ê	Ê	Î	Î	Ê	Ê	Î	Ê	Ê	Ê	Î	
	≝	<u>۳</u>	Ē	≝	<u>≝</u>	Ē	≝	<u></u> ≝	<u></u> ≝	≝	Ē	Ē	Ē	≝	Ē	<u></u> ≝	≝	
8																		
12																		
14																		
15																		
17																		
20																		
25																		
30																		
32																		
35																		
40																		
45																		
50																		
55																		
60																		
65																		
70																		
80																		
85																		
90																		
95																		
100																		
110																		
120																		
130																		

Spherical roller bearings

See SKF product brochure 4401 "SKF spherical roller bearings" or SKF Interactive Engineering Catalogue for more detailed specifications

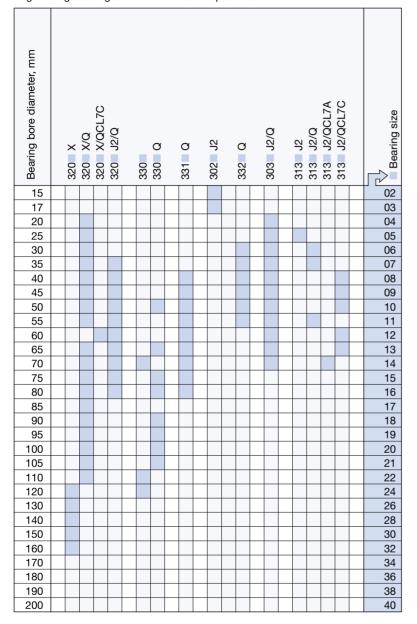
Bearing bore diameter, mm	239 CC/W33	230 CC/M/33	230 CC/C3W33	240 CC/W33	231 CC/W33	231 CCK/W33	231 CCK/C3W33	241 CC/W33	222 CC/W33	222 CC/C3W33	222 CCK/W33	222 CCK/C3W33	222 E	222 EK	222 EK/C3	232 CC/W33	232 CCK/W33	213 CC	213 E	213 EK	223 E	223 EK	223 EK/C3	Bearing size
20																								04
20 25																								05
30																								05 06
35 40																								07 08
40																								08
45																								09
50																								10
50 55																								09 10 11 12
60 65																								12
65																								13
70 75																								14 15 16 17 18
75																								15
80 85																								16
85																								17
90																								18
95																								19
100																								19 20
90 95 100 110																								22
120																								24
130																								24 26 28 30
140																								28
150																								30
160																								32
130 140 150 160 170 180																								32 34 36
180																								36
190																								38
200																								40
220																								44 48
240																								48

Explorer bearings, see page 10 for more information

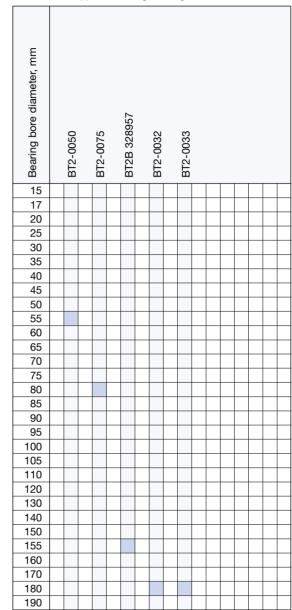

High precision and preloaded spherical roller bearings

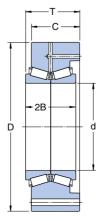
For more detailed specifications please contact the nearest SKF application engineering service

DI Bearing bore diameter, mm	231 CCK/VA759	222 CCK/VA759	222 EK/VA751	222 EK/VA759	222 VAB	223 CCK/VA759	223 EK/VA751	223 EK/VA759			Bearing size
10											00
12											00 01 02
15											02
17											03
20											04
25 30											05
30											06
35											07
40											08
45											09
50											10 11 12 13 14 15
55											11
60											12
65											13
70											14
75											15
80											16
85											17 18 19 20 21
90											18
95											19
100											20
105											21
110											22 24
100 105 110 120 130 140											24
130											26 28 30
140											28
150											30
160											32


Bearing bore diameter, mm	450918 C	453538	964	467304	466915 C/W33	458681	467418 C	466144 C/W33	468603 C	468043 CA/W33	454548	466077 CAM2/W33	466817 C/W33		
Bea	450	453	467	467	466	458	467	466	468	468	454	466	466		
10															
10 12 15 17															
15															
17															
20															
25															
30															
30 35															
40 45															
45															
50															
55															
60															
60 65															
70															
75															
80															
85															
90															
95															
100															
105															
100 105 110 120 130															
120															
130															
140															
150															
160															

Designation	Princip	bal dimer	nsions
	d	D	В
-	mm		
450918 C 453538 467964 467304 466915 C/W33 458681 467418 C 466144 C/W33 468603 C 468043 CA/W33 454548 466077 CAM2/W33 466817 C/W33	45 50 70 75 85 90 110 110 130 140 140	100 90 110 150 160 150 160 180 200 210 240 250	36 23 40 51 55 36 40 56 53 69,8 64 80 88


Taper roller bearings


See SKF General Catalogue 4000 or SKF Interactive Engineering Catalogue for more detailed specifications

High precision taper roller bearings

For more detailed specifications please contact the nearest SKF application engineering service

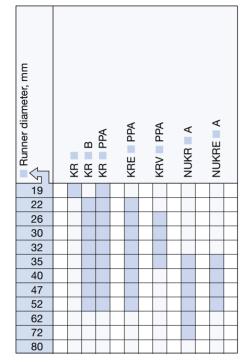
Designation	Princ	ipal di	mensio	ons	
	d	D	Т	С	2B
-	mm				
BT2-0050 BT2-0075 BT2B 328957 BT2-0033 BT2-0032	55 80 155 180 180	140 175 200 250 250	50 61 66 105 205	50 57 54 83 83	50 59 66 105 205

Cam rollers

See SKF General Catalogue 4000 or SKF Interactive Engineering Catalogue for more detailed specifications

Support rollers with axial guidance

See SKF catalogue 4703 "Needle roller bearings" or SKF Interactive Engineering Catalogue for more detailed specifications


Support rollers without axial guidance

Runner diameter, mm	3057 C-2Z	3058 C-2Z				Bearing size
32						00
35						01
40						02
47						03
52						04
62						05
72						06
80						07

Runner diameter, mm	Bearing bore diameter, mm		NATR –	NATR 💌 X	NATR 🖉 PPA	NATR 🔳 PPX	NATV 🗾 PPA	NATV 🔳 PPX	NUTR 🖉 A	NUTR X	
16	5										
19	6										
24	8										
30	10										
32	12										
35	15										
40	17										
47	20										
52	25										
62	30										
72	35										
80	40										
85	45										
90	50	1									

Catalogue for more detailed specifications										
Runner diameter, mm	Bearing bore diameter, mm	NA 222RS				₹ Bearing size				
16	5					/5				
19	6					/6				
24	8					/8				
30	10					00				
32	12					01				
35	15					02				
40	17					03				
47	20					04				
52	25					05				
62	30					06				
72	35					07				
80	40									
85	45									
90	50									

Cam followers

Other products

Besides the products included in this recommended product range, SKF also offers a comprehensive assortment of plain bearings, seals, linear motion products as well as tools, measuring equipment and lubricants. For advanced printing cylinder applications SKF can also offer a tailored range of precision spindles. Detailed information on these products will be found in special publications which will be supplied on request.

Plain bearings

Spherical plain bearings and rod ends in various designs and with various combinations of sliding contact surfaces. Dry sliding bushings of various composite materials.

See SKF Interactive Engineering Catalogue.

Seals

In a variety of designs and executions for applications in all sectors of industry

- radial shaft seals
- mechanical seals
- V-ring seals
- axial clamp seals
- sealing and spacing washers

See SKF catalogue 4006 "CR seals" or SKF Interactive Engineering Catalogue.

Linear ball bearings

A full range of bearings as well as appropriate accessories such as housings, shafts and shaft supports.

For more details please contact your local SKF Linear Motion representative.

Precision rail guides

With ball, cylindrical roller or needle roller and cage assemblies for limited and unlimited travel.

For more details please contact your local SKF Linear Motion representative.

Ball and roller screws

In a variety of designs for positioning movements where there are high or very high demands for accuracy.

For more details please contact your local SKF Linear Motion representative.

Gauges and monitoring equipment For tapered shafts, accurate mounting of high precision bearings and for monitoring of machines.

See SKF catalogue MP 201 "Maintenance Tools and Lubricants".

Mounting and dismounting equipment

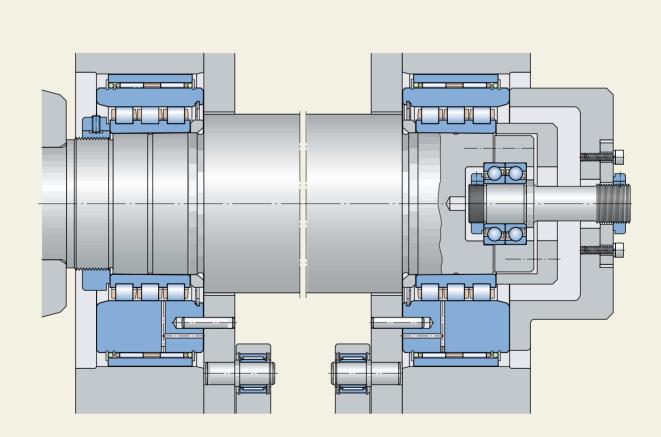
Large range of tools for mounting and dismounting mechanically, by the SKF oil injection method and by heating.

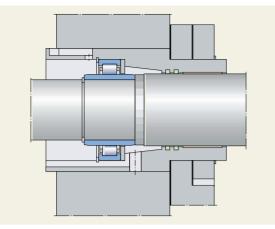
See SKF catalogue MP 201 "Maintenance Tools and Lubricants".

Greases Specialist bearing greases in a wide range of package sizes.

See SKF catalogue MP 201 "Maintenance Tools and Lubricants".

Precision spindles


SKF manufactures a wide range of spindles that are fully engineered to meet the needs of many precision applications. Quick availablity and rugged performance allow the designer to select the right spindle for a particular application.


SKF spindles come in a wide range of designs, either belt-driven or motorised, and are available as cartridge or rectangular units. SKF can also provide special spindles tailored to specific customer requirements.

For more details please contact your local SKF representative.

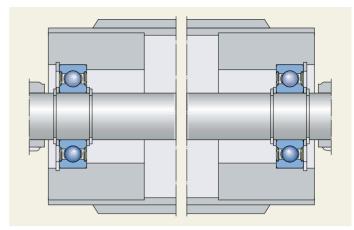
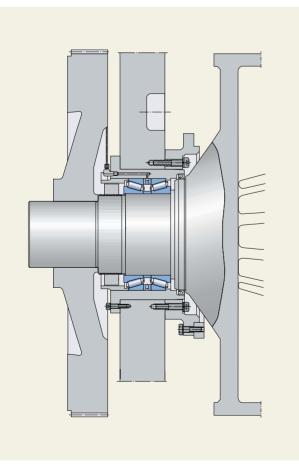
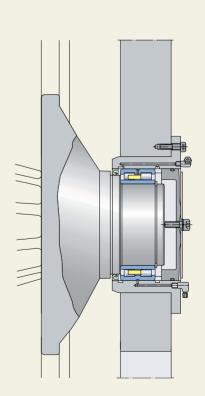

Application examples

Fig 1 Arrangement with printing cylinder bearing units (PCU), high precision lock nuts, matched single row angular contact ball bearings and needle roller bearings

Fig 2 Oscillating inking roller Oscillating roller of inking system fitted with a cylindrical roller bearing with extended inner ring




Fig 3 Inking roller

Bearing arrangement of an inking roller using deep groove ball bearings with seals on both sides

Fig 4 Transfer cylinder Taper roller bearing in the locating arrangement of a transfer cylinder in a sheet fed press

Fig 5 Transfer cylinder High precision cylindrical roller bearing in the non-locating arrangement of a transfer cylinder in a sheet fed press

The SKF Group – a worldwide corporation

SKF is an international industrial Group operating in some 130 countries and is world leader in bearings.

The company was founded in 1907 following the invention of the self-aligning ball bearing by Sven Wingquist and, after only a few years, SKF began to expand all over the world.

Today, SKF has some 40 000 employees and around 80 manufacturing facilities spread throughout the world. An international sales network includes a large number of sales companies and some 7 000 distributors and retailers. Worldwide availability of SKF products is supported by a comprehensive technical advisory service.

The key to success has been a consistent emphasis on maintaining the highest quality of its products and services. Continuous investment in research and development has also played a vital role, resulting in many examples of epoch-making innovations.

The business of the Group consists of bearings, seals, special steel and a comprehensive range of other hightech industrial components. The experience gained in these various fields provides SKF with the essential knowledge and expertise required in order to provide the customers with the most advanced engineering products and efficient service.

The SKF Group is the first major bearing manufacturer to have been granted approval according to ISO 14001, the international standard for environmental management systems. The certificate is the most comprehensive of its kind and covers more than 60 SKF production units in 17 countries.

The SKF Engineering & Research Centre is situated just outside Utrecht in The Netherlands. In an area of 17 000 square metres (185 000 sq.ft) some 150 scientists, engineers and support staff are engaged in the further improvement of bearing peformance. They are developing technologies aimed at achieving better materials, better designs, better lubricants and better seals – together leading to an even better understanding of the operation of a bearing in its application. This is also where the SKF Life Theory was evolved, enabling the design of bearings which are even more compact and offer even longer operational life.

SKF has developed the Channel concept in factories all over the world. This drastically reduces the lead time from raw material to end product as well as work in progress and finished goods in stock. The concept enables faster and smoother information flow, eliminates bottlenecks and bypasses unnecessary steps in production. The Channel team members have the knowledge and commitment needed to share the responsibility for fulfilling objectives in areas such as quality, delivery time, production flow etc.

SKF manufactures ball bearings, roller bearings and plain bearings. The smallest are just a few millimetres (a fraction of an inch) in diameter, the largest several metres. SKF also manufactures bearing and oil seals which prevent dirt from entering and lubricant from leaking out. SKF's subsidiaries CR and RFT S.p.A. are among the world's largest producers of seals.

© Copyright SKF 2000

The contents of this publication are the copyright of the publisher and may not be reproduced (even extracts) unless permission is granted. Every care has been taken to ensure the accuracy of the information contained in this publication but no liability can be accepted for any loss or damage whether direct, indirect or consequential arising out of the use of the information contained herein.

Publication 4781 E

Printed in Sweden on environmentally friendly, chlorine-free paper (Multiart Silk) by Elanders Graphic Systems AB.